Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.159
Filtrar
1.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613672

RESUMO

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Interleucina-8/genética , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia/genética , Placenta , Artérias , Meios de Cultivo Condicionados , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
2.
J Cancer Res Clin Oncol ; 150(4): 209, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656555

RESUMO

PURPOSE: The receptor-interacting protein kinase (RIPK4) has an oncogenic function in melanoma, regulates NF-κB and Wnt/ß-catenin pathways, and is sensitive to the BRAF inhibitors: vemurafenib and dabrafenib which lead to its decreased level. As its role in melanoma remains not fully understood, we examined the effects of its downregulation on the transcriptomic profile of melanoma. METHODS: Applying RNA-seq, we revealed global alterations in the transcriptome of WM266.4 cells with RIPK4 silencing. Functional partners of RIPK4 were evaluated using STRING and GeneMANIA databases. Cells with transient knockdown (via siRNA) and stable knockout (via CRISPR/Cas9) of RIPK4 were stimulated with TNF-α. The expression levels of selected proteins were assessed using Western blot, ELISA, and qPCR. RESULTS: Global analysis of gene expression changes indicates a complex role for RIPK4 in regulating adhesion, migration, proliferation, and inflammatory processes in melanoma cells. Our study highlights potential functional partners of RIPK4 such as BIRC3, TNF-α receptors, and MAP2K6. Data from RIPK4 knockout cells suggest a putative role for RIPK4 in modulating TNF-α-induced production of IL-8 and IL-6 through two distinct signaling pathways-BIRC3/NF-κB and p38/MAPK. Furthermore, increased serum TNF-α levels and the correlation of RIPK4 with NF-κB were revealed in melanoma patients. CONCLUSION: These data reveal a complex role for RIPK4 in regulating the immune signaling network in melanoma cells and suggest that this kinase may represent an alternative target for melanoma-targeted adjuvant therapy.


Assuntos
Interleucina-6 , Interleucina-8 , Melanoma , Fator de Necrose Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
PLoS One ; 19(4): e0300687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593151

RESUMO

Fabry disease (FD) is a lysosomal storage disorder of X-linked inheritance. Mutations in the α-galactosidase A gene lead to cellular globotriaosylceramide (Gb3) depositions and triggerable acral burning pain in both sexes as an early FD symptom of unknown pathophysiology. We aimed at elucidating the link between skin cells and nociceptor sensitization contributing to FD pain in a sex-associated manner. We used cultured keratinocytes and fibroblasts of 27 adult FD patients and 20 healthy controls. Epidermal keratinocytes and dermal fibroblasts were cultured and immunoreacted to evaluate Gb3 load. Gene expression analysis of pain-related ion channels and pro-inflammatory cytokines was performed in dermal fibroblasts. We further investigated electrophysiological properties of induced pluripotent stem cell (iPSC) derived sensory-like neurons of a man with FD and a healthy man and incubated the cells with interleukin 8 (IL-8) or fibroblast supernatant as an in vitro model system. Keratinocytes displayed no intracellular, but membrane-bound Gb3 deposits. In contrast, fibroblasts showed intracellular Gb3 and revealed higher gene expression of potassium intermediate/small conductance calcium-activated potassium channel 3.1 (KCa 3.1, KCNN4) in both, men and women with FD compared to controls. Additionally, cytokine expression analysis showed increased IL-8 RNA levels only in female FD fibroblasts. Patch-clamp studies revealed reduced rheobase currents for both iPSC neuron cell lines incubated with IL-8 or fibroblast supernatant of women with FD. We conclude that Gb3 deposition in female FD patient skin fibroblasts may lead to increased KCa3.1 activity and IL-8 secretion. This may result in cutaneous nociceptor sensitization as a potential mechanism contributing to a sex-associated FD pain phenotype.


Assuntos
Doença de Fabry , Adulto , Feminino , Humanos , Masculino , alfa-Galactosidase/genética , Citocinas , Doença de Fabry/complicações , Doença de Fabry/genética , Doença de Fabry/diagnóstico , Fibroblastos/metabolismo , Interleucina-8/genética , Dor , Pele/metabolismo
4.
J Immunol Res ; 2024: 8553447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550710

RESUMO

Background: Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with nasal polyps (CRSwNP). Methods: The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated. Their functions were also analyzed using air-liquid interface (ALI)-cultured primary human nasal epithelial cells (HNECs) and transcriptomic analysis. Results: Both SerpinB3 and B4 expression was higher in nasal mucosa, brush cells, and secretions from eosinophilic (E) CRSwNP and nonECRSwNP patients than in healthy controls. Immunofluorescence staining indicated that SerpinB3 and B4 were primarily expressed in epithelial cells and their expression was higher in CRSwNP patients. SerpinB3 and B4 expression was upregulated by interleukin-4 (IL-4), IL-5, IL-6, and IL-17a. Transcriptomic analysis identified differentially expressed genes (DEGs) in response to recombinant SerpinB3 and B4 stimulation. Both the DEGs of SerpinB3 and B4 were associated with disease genes of nasal polyps and inflammation in DisGeNET database. Pathway enrichment indicated that downregulated DEGs of SerpinB3 and B4 were both enriched in cytokine-cytokine receptor interactions, with CXCL8 as the hub gene in the protein-protein interaction networks. Furthermore, CXCL8/IL-8 expression was downregulated by recombinant SerpinB3 and B4 protein in ALI-cultured HNECs, and upregulated when knockdown of SerpinB3/B4. Conclusion: SerpinB3/B4 expression is upregulated in nasal mucosa of CRSwNP patients. SerpinB3/B4 may play an anti-inflammatory role in CRSwNP by inhibiting the expression of epithelial cell-derived CXCL8/IL-8.


Assuntos
Pólipos Nasais , Rinite , 60523 , Sinusite , Humanos , Rinite/complicações , Rinite/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pólipos Nasais/patologia , Temefós/metabolismo , Mucosa Nasal/patologia , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Sinusite/complicações , Células Epiteliais , Inflamação/metabolismo , Doença Crônica
5.
Hum Cell ; 37(3): 782-800, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509270

RESUMO

Inflammation and immune responses play important roles in cancer development and prognosis. We identified 59 upregulated inflammation- and immune-related genes (IIRGs) in clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas database. Among the upregulated IIRGs, nucleotide binding oligomerization domain 2 (NOD2), PYD and CARD domain (PYCARD) were also confirmed to be upregulated in the Oncomine database and in three independent GEO data sets. Tumor immune infiltration resource database analysis revealed that NOD2 and PYCARD levels were significantly positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells. Multivariate Cox hazards regression analysis indicated that based on clinical variables (age, gender, tumor grade, pathological TNM stage), NOD2, but not PYCARD, was an independent, unfavorable ccRCC prognostic biomarker. Functional enrichment analyses (GSEA) showed that NOD2 was involved in innate immune responses, inflammatory responses, and regulation of cytokine secretion. Meanwhile, mRNA and protein levels of NOD2 were elevated in four ccRCC cell lines (786-O, ACHN, A498 and Caki-1), and its knockdown significantly inhibited IL-8 secretion, thereby inhibiting ccRCC cell proliferation and invasion. Furthermore, results showed that miR-20b-5p targeted NOD2 to alleviate NOD2-mediated IL-8 secretion. In conclusion, NOD2 is a potential prognostic biomarker for ccRCC and the miR-20b-5p/NOD2/IL-8 axis may regulate inflammation- and immune-mediated tumorigenesis in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Interleucina-8/genética , Inflamação/genética , Neoplasias Renais/genética , Biomarcadores , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD2/genética
6.
Cancer Lett ; 588: 216784, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38458594

RESUMO

Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sulfonamidas , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Macrófagos Associados a Tumor/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transdução de Sinais , Glicólise , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
J Cell Mol Med ; 28(4): e18185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38396325

RESUMO

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animais , Camundongos , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , NF-kappa B , Humanos
8.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396634

RESUMO

Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known. We investigated the role of Del-1 in the pathogenesis of COPD. Del-1 protein expression was decreased in the lungs of COPD patients, especially in epithelial cells and alveolar macrophages. In contrast to human lung tissue, Del-1 expression was upregulated in lung tissue from mice treated with cigarette smoke extracts (CSE). Overexpression of Del-1 significantly suppressed IL-8 release and apoptosis in CSE-treated epithelial cells. In contrast, knockdown of Del-1 enhanced IL-8 release and apoptosis. In macrophages, overexpression of Del-1 significantly suppressed inflammatory cytokine release, and knockdown of Del-1 enhanced it. This anti-inflammatory effect was mediated by inhibiting the phosphorylation and acetylation of NF-κB p65. Nuclear factor erythroid 2-related factor 2 (Nrf2) activators, such as quercetin, resveratrol, and sulforaphane, increased Del-1 in both cell types. These results suggest that Del-1, mediated by Nrf2, plays a protective role against the pathogenesis of COPD, at least in part through anti-inflammatory and anti-apoptotic effects.


Assuntos
Interleucina-8 , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Apoptose/genética , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-8/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar Tabaco/efeitos adversos , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo
9.
Fish Shellfish Immunol ; 148: 109465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408547

RESUMO

IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.


Assuntos
Bass , Nocardiose , Nocardia , Animais , Bass/genética , Interleucina-8/genética , Interleucina-10/genética , Nocardiose/genética , Nocardiose/veterinária , Aminoácidos
10.
Stem Cell Rev Rep ; 20(3): 816-826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340274

RESUMO

Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-ß (TGF-ß) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.


Assuntos
Células-Tronco Mesenquimais , Sirolimo , Feminino , Humanos , Gravidez , Sirolimo/farmacologia , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Interleucina-6/metabolismo , Placenta/metabolismo
11.
Toxicol Lett ; 394: 46-56, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408587

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants attached to fine particulate matter in the atmosphere. They induce lung inflammation, asthma, and other lung diseases. Exploring the toxic mechanism of PAHs on lung epithelial cells may provide a theoretical basis for the prevention and treatment of respiratory diseases induced by PAHs. In our study, 16 human bronchial epithelial (16HBE) cells were exposed to different concentrations of gypsum dust, Benzo(a)pyrene (BaP), and BaP-loaded gypsum dust for 24 hours. Gypsum dust loaded with BaP significantly increased the cytotoxicity of 16HBE cells, enhanced the production of lactate dehydrogenase (LDH), interleukin-6 (IL-6) and interleukin-8 (IL-8), induced cell apoptosis, and upregulate the expression of hsa_circ_0008500 (circ_0008500). The mechanism was studied with a BaP-loaded gypsum dust concentration of 1.25 mg/mL. StemRegenin 1 (SR1) pretreat significantly reduced the release of LDH, IL-6, and IL-8 and decreased the protein levels of Ahr、XAP2, C-myc, and p53. Second-generation sequencing indicated that circ_0008500 was highly expressed after 16HBE induced by BaP-loaded gypsum dust. Functional experiments confirmed that circ_0008500 promoted the inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust by regulating the Ahr signaling pathway. Our study showed that fine particulate matter adsorption of BaP significantly increased the toxic effect of BaP on cells. By activating the Ahr/C-myc pathway, circ_0008500 promoted inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sulfato de Cálcio/metabolismo , Sulfato de Cálcio/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Células Epiteliais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poeira , Apoptose , Material Particulado/toxicidade
12.
J Bras Pneumol ; 50(1): e20230338, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-38359298

RESUMO

OBJECTIVE: To determine the role of the IL8 rs4073 polymorphism in predicting the risk of central nervous system (CNS) toxicity in patients receiving standard pharmacological treatment for multidrug-resistant tuberculosis (MDR-TB). METHODS: A cohort of 85 consenting MDR-TB patients receiving treatment with second-line antituberculosis drugs had their blood samples amplified for the IL8 (rs4073) gene and genotyped. All patients were clinically screened for evidence of treatment toxicity and categorized accordingly. Crude and adjusted associations were assessed. RESULTS: The chief complaints fell into the following categories: CNS toxicity; gastrointestinal toxicity; skin toxicity; and eye and ear toxicities. Symptoms of gastrointestinal toxicity were reported by 59% of the patients, and symptoms of CNS toxicity were reported by 42.7%. With regard to the genotypes of IL8 (rs4073), the following were identified: AA, in 64 of the study participants; AT, in 7; and TT, in 11. A significant association was found between the dominant model of inheritance and CNS toxicity for the crude model (p = 0.024; OR = 3.57; 95% CI, 1.18-10.76) and the adjusted model (p = 0.031; OR = 3.92; 95% CI, 1.13-13.58). The AT+TT genotype of IL8 (rs4073) showed a 3.92 times increased risk of CNS toxicity when compared with the AA genotype. CONCLUSIONS: The AT+TT genotype has a tendency to be associated with an increased risk of adverse clinical features during MDR-TB treatment.


Assuntos
Interleucina-8 , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Interleucina-8/genética , Interleucina-8/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Genótipo , Antituberculosos/efeitos adversos
13.
Egypt J Immunol ; 31(1): 48-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224035

RESUMO

Helicobacter pylori (H. pylori) infection has a variety of clinical outcomes, and host genetic factors play an important role in this process. Cytokines are important factors in mediating and controlling the inflammatory process during H. pylori infection. Interleukin-8 (IL-8) plays a critical role in the epithelial cell response to H. pylori infection and the development of H. pylori-related gastric disorders. The IL-8 gene has an A/T base pair polymorphism in the promoter region (-251), which has been linked to an increase in interleukin production by gastric epithelial cells. In this context, the goal of our study was to determine the polymorphism in the IL-8 gene and its relation to H. pylori infection and H. pylori-associated gastric diseases. Gastric biopsy specimens were collected from 44 patients with H. pylori infection and 29 patients without H. pylori infection. The rapid urease test and detection of the glmM gene were used to diagnose H. pylori infection. Polymerase chain reaction-restriction fragment length polymorphism was used to identify the polymorphism in the Il-8 gene (at position-251). The presence of the A/A and T/A genotypes of the IL-8 gene was found to be significantly associated with susceptibility to H. pylori infection (p = 0.012 and p = 0.004, respectively). Also, the IL-8 A allele was significantly associated with H. pylori infection in our study (p = 0.002). We did not find a significant association between IL-8 gene polymorphism and a higher risk of gastritis and peptic ulcer disease. In conclusion, IL-8 gene polymorphism at -251 position was significantly associated with H. pylori infection.


Assuntos
Infecções por Helicobacter , Interleucina-8 , Humanos , Genótipo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Helicobacter pylori , Interleucina-8/genética , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição
14.
Food Funct ; 15(2): 569-579, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38170495

RESUMO

This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.


Assuntos
Interleucina-8 , Receptor 2 Toll-Like , Humanos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células CACO-2 , Junções Íntimas/metabolismo , Esterificação , Expressão Gênica , Pectinas/farmacologia , Pectinas/metabolismo , Anti-Inflamatórios/metabolismo
15.
Microbes Infect ; 26(1-2): 105244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37914020

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Assuntos
Alcaloides , Corydalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Porphyromonas gingivalis/metabolismo , Corydalis/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Macrófagos/microbiologia
16.
Arch Toxicol ; 98(3): 883-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055018

RESUMO

Triclosan (TCS) is an antimicrobial compound widely used in personal hygiene products such as mouthwash and toothpaste; and has been found in human blood, breast milk, and urine. Interleukin (IL)-6 and IL-1 beta (IL-1ß) are pro-inflammatory cytokines regulating cell growth, tissue repair, and immune function; increased levels of each have been associated with many diseases, including cancer. Previous studies showed that TCS at concentrations between 0.05 and 5 µM consistently increased the secretion of IL-1ß and IL-6 from human immune cells within 24 h of exposure. The current study demonstrates that this increase in secretion was not due simply to release of existing stores but was due to an increase in cellular production/levels (both secreted and intracellular levels) of each of these cytokines. Production of IL-1ß and IL-6 was increased by exposure to one or more concentration of TCS at each length of exposure (10 min, 30 min, 6 h, and 24 h). TCS-induced stimulation of cytokine production was shown to be dependent on the mitogen-activated protein kinase (MAPK) p44/42 (ERK 1/2). It was also shown that these TCS-induced increases in IL-1ß and IL6 production were accompanied by increased mRNA for IL-1ß and IL-6. The ability of TCS to increase production indicates that rather than activating a self-limiting process of depleting cells of already existing stores of IL-1ß or IL-6, TCS can stimulate a process that has the capacity to provide sustained production of these cytokines and thus may lead to chronic inflammation and its pathological consequences.


Assuntos
Interleucina-6 , Triclosan , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Triclosan/toxicidade , Citocinas , Antibacterianos , Células Cultivadas , Interleucina-8/genética
17.
Probiotics Antimicrob Proteins ; 16(1): 1-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36720771

RESUMO

Postbiotics include cell lysates (CLs), enzymes, cell wall fragments, and heat-killed bacteria derived from probiotics. Although postbiotics are increasingly being considered for their potential health-promoting properties, the effects of postbiotics on virus-mediated inflammatory responses in the intestine have not been elucidated. Hence, the present study aimed to examine whether CLs of Lactipantibacillus plantarum (LP CL) and Lacticaseibacillus rhamnosus GG (LR CL) could inhibit virus-mediated inflammatory responses in the human intestinal epithelial cell line HT-29 in vitro. Pretreatment with LP CL and LR CL significantly inhibited interleukin (IL)-8 production, which was induced by poly I:C, a synthetic analog of double-stranded RNA (dsRNA) viruses, at the mRNA and protein levels in HT-29 cells. However, peptidoglycans and heat-killed L. plantarum and L. rhamnosus GG did not effectively inhibit IL-8 production. LP CL and LR CL attenuated the poly I:C-induced phosphorylation of ERK and JNK and the activation of NF-κB, suggesting that these CLs could inhibit poly I:C-induced IL-8 production by regulating intracellular signaling pathways in HT-29 cells. Furthermore, among the short-chain fatty acids, butyrate enhanced the inhibitory effect of CLs on poly I:C-induced IL-8 production at the mRNA and protein levels in HT-29 cells, while acetate and propionate did not. Taken together, these results suggest that both LP CL and LR CL could act as potent effector molecules that can inhibit virus-mediated inflammatory responses and confer synergistic inhibitory effects with butyrate in human intestinal epithelial cells.


Assuntos
Interleucina-8 , Lactobacillus , Humanos , Lactobacillus/genética , Interleucina-8/genética , Butiratos/metabolismo , Butiratos/farmacologia , Células Epiteliais/microbiologia , Intestinos , Células HT29 , Mucosa Intestinal/metabolismo , RNA Mensageiro/metabolismo , Poli I/metabolismo , Poli I/farmacologia
19.
Sleep Med ; 114: 82-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157624

RESUMO

BACKGROUND: Obstructive Sleep Apnea Syndrome (OSAS) affects approximately 1-5% of children and is linked to cardiovascular, metabolic, and neurobehavioral complications. Dysregulation of inflammatory process and sympathetic nervous system overstimulation leading to increased catecholamine production may contribute to OSAS pathogenesis. Polymorphonuclear Neutrophils (PMN), key cells in the inflammatory process, express adrenergic receptors, including ß2-adrenergic receptor (ADRB2), which modulate their functions through an autocrine/paracrine loop. In this pilot study, we aimed to investigate the relationship between OSAS severity, ADRB2 expression in PMN and patient's inflammatory profile before and after adenotonsillectomy. PATIENTS/METHODS: In this pilot study we enrolled OSAS pediatric patients in which ADRB2, IL-6 and IL-8 mRNA expression levels were evaluated in circulating PMN by RT-PCR. RESULTS: 9 OSAS pediatric patients, ranged from 3 to 8 years of age, were enrolled in the study. We found that adenotonsillectomy significantly reduced ADRB2 as well as IL-6, IL-8 mRNA expression levels in PMN. CONCLUSIONS: These findings offer valuable insights into the underlying immune and inflammatory mechanisms of OSAS and open the way for the development of novel therapeutic approaches.


Assuntos
Neutrófilos , Apneia Obstrutiva do Sono , Criança , Humanos , Adenoidectomia , Interleucina-6/genética , Interleucina-8/genética , Projetos Piloto , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/cirurgia , Apneia Obstrutiva do Sono/complicações
20.
Mol Med ; 29(1): 162, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041015

RESUMO

BACKGROUND: The linear long non-coding RNA P14AS has previously been reported to be dysregulated in colon cancer, but the mechanistic role that P14AS plays in colon cancer progression has yet to be clarified. Accordingly, this study was developed to explore the regulatory functions of ANRIL linear transcript-P14AS in cancer. METHODS: The expression of P14AS, ANRIL, miR-23a-5p and their target genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell supernatants of IL6 and IL8 were measured by Enzyme linked immunosorbent (ELISA) assay. Dual-luciferase reporter assays, RNA immunoprecipitation, or pull-down assays were used to confirm the target association between miR-23a-5p and P14AS or UBE2D3. Cell proliferation and chemosensitivity of NF-κB inhibitor BAY 11-7085 were evaluated by cell counting kit 8 (CCK8). RESULTS: When P14AS was overexpressed in colon cancer cell lines, enhanced TNF-NF-κB signaling pathway activity was observed together with increases in IL6 and IL8 expression. The Pita, miRanda, and RNA hybrid databases revealed the ability of miR-23a-5p to interact with P14AS, while UBE2D3 was further identified as a miR-23a-5p target gene. The results of dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation experiments confirmed these direct interactions among P14AS/miR-23a-5p/UBE2D3. The degradation of IκBa mediated by UBE2D3 may contribute to enhanced NF-κB signaling in these cells. Moreover, the beneficial impact of P14AS on colon cancer cell growth was eliminated when cells were treated with miR-23a-5p inhibitors or UBE2D3 was silenced. As such, these findings strongly supported a role for the UBE2D3/IκBa/NF-κB signaling axis as a mediator of the ability of P14AS to promote colon cancer progression. CONCLUSIONS: These data suggested a mechanism through which the linear ANRIL transcript P14AS can promote inflammation and colon cancer progression through the sequestration of miR-23a-5p and the modulation of NF-κB signaling activity, thus highlighting P14AS as a promising target for therapeutic intervention efforts.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , Proliferação de Células , Neoplasias do Colo/genética , Interleucina-6/genética , Interleucina-8/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Neoplásicos , NF-kappa B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...